Makalah Korelasi Regresi

Oleh Elfina Simbar

347,5 KB 3 tayangan 0 unduhan
 
Bagikan artikel

Transkrip Makalah Korelasi Regresi

BAB I PENDAHULUAN Latar Belakang Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis dan mempresentasikan data. Singkatnya, statistika adalah ilmu yang berkenan dengan data. Statistika dibagi menjadi dua, yaitu Statistika Deskriptif dan Statistika Inferensial. Statistika deskriptif berkenaan dengan deskripsi data, misalnya dari menghitung rata-rata dan varians dari data mentah; mendeksripsikan menggunakan tabel-tabel atau grafik sehingga data mentah lebih mudah “dibaca” dan lebih bermakna. Sedangkan statistika inferensial lebih dari itu, misalnya melakukan pengujian hipotesis, melakukan prediksi observasi masa depan, atau membuat model regresi. Untuk saat ini, kami akan membahas tentang ilmu Statistika Deskriptif. Statistika dalam arti sempit berarti kumpulan data berupa angka, penyajian data dalam table dan grafik, bilangan yang menunjukan karakteristik dari kumpulan data. Statistika dalam arti luas yaitu metode yang digunakan dalam pengumpulan dan analisis data yang berupa angka-angka sehingga dapat diperoleh informasi yang berguna. Statistika adalah suatu metode yang menjelaskan tata cara pengumpulan, penyusunan, penyajian, penganalisaan, dan penginterprestasian data menjadi informasi yang lebih berguna. Menurut Sudjana (1996:7), Statistika Deskriptif adalah fase statistika dimana hanya berusaha melukiskan atau menganalisa kelompok yang diberikan tanpa membuat atau menarik kesimpulan tentang populasi atau kelompok yang lebih besar dinamakan Statistika Deskriptif. Dalam materi Statistika Deskriptif, terdapat Regresi dan Korelasi. Regresi dan korelasi digunakan untuk mempelajari pola dan mengukur hubungan statistik antara dua atau lebih variabel. Sepanjang sejarah umat manusia,orang melakukan penelitian tentang ada tidaknya hubungan antara dua hal,fenomena,kejadian atau lainnya. Dan ada tidaknya pengaruh antara satu kejadian dengan kejadian yang lainnya. Karena itu untuk mempermudah dalam melakukan penghitungan suatu kejadian maka digunakan korelasi dan regresi dalam ilmu statistika. Korelasi merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran asosiasi / hubungan (Measures of association). Teknik ini berguna untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala-skala tertentu. Regresi merupakan salah satu analisis yang bertujuan untuk mengetahui pengaruh suatu variabel terhadap variabel lain .Dalam analisis regresi ,variabel yang mempengaruhi disebut independent variabel (variable bebas) dan variabel yang dipengaruhi disebut dependent variabel (variabel terikat) BAB II PEMBAHASAN A. Sejarah Statistika Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara (state)”. Pada awal abad ke-19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama (Statistics) dan pengertian ini ke dalam bahasa Inggris. Jadi, statistika secara prinsip mula-mula hanya mengurus data yang dipakai lembagalembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang berubah setiap saat. Pada abad ke-19 dan awal abad ke-20 statistika mulai banyak menggunakan bidang-bidang dalam matematika, terutama peluang. Cabang statistika yang pada saat ini sangat luas digunakan untuk mendukung metode ilmiah, statistika inferensi, dikembangkan pada paruh kedua abad ke-19 dan awal abad ke-20 oleh Ronald Fisher (peletak dasar statistika inferensi), Karl Pearson(metode regresi linear), dan William Sealey Gosset (meneliti problem sampel berukuran kecil). Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh dari astronomi hingga linguistika. semua bidang ilmu pengetahuan, Bidang-bidang ekonomi, biologi dan mulai cabang-cabang terapannya, serta psikologi banyak dipengaruhi oleh statistika dalam metodologinya. Akibatnya lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika (atau biostatistika), dan psikometrika. Meskipun ada pihak yang menganggap statistika sebagai cabang dari matematika, tetapi sebagian pihak lainnya menganggap statistika sebagai bidang yang banyak terkait dengan matematika melihat dari sejarah dan aplikasinya. Di Indonesia, kajian statistika sebagian besar masuk dalam fakultas matematika dan ilmu pengetahuan alam, baik di dalam departemen tersendiri maupun tergabung dengan matematika. I. Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Sir Francis Galton pada tahun 1886. Galton menemukan adanya tendensi bahwa orang tua yang memiliki tubuh tinggi memiliki anak-anak yang tinggi, orang tua yang pendek memiliki anak-anak yang pendek pula. Kendati demikian. Ia mengamati bahwa ada kecenderungan tinggi anak cenderung bergerak menuju rata-rata tinggi populasi secara keseluruhan. Dengan kata lain, ketinggian anak yang amat tinggi atau orang tua yang amat pendek cenderung bergerak kearah ratarata tinggi populasi. Inilah yang disebut hukum Golton mengenai regresi universal. Dalam bahasa galton, ia menyebutkan sebagai regresi menuju mediokritas. Hukum regresi semesta (law of universal regression) dari Galton diperkuat oleh temannya Karl Pearson, yang mengumpulkan lebih dari seribu catatan tinggi anggota kelompok keluarga. Ia menemukan bahwa rata-rata tinggi anak laki-laki kelompok ayah (yang) pendek lebih besar dari pada tinggi ayah mereka, jadi “mundurnya” (“regressing”) anak laki-laki yang tinggi maupun yang pendek serupa kea rah rata-rata tinggi semua laki-laki. Dengan kata lain Galton, ini adalah “kemunduran kearah sedang”. Secara umum, analisis regresi pada dasarnya adalah studi mengenai ketergantungan satu variabel dependen (terikat) dengan satu atau lebih variabel independent (variabel penjelas/bebas), dengan tujuan untuk mengestimasi dan/ atau memprediksi rata-rata populasi atau niiai rata-rata variabel dependen berdasarkan nilai variabe! independen yang diketahui. Pusat perhatian adalah pada upaya menjelaskan dan mengevalusi hubungan antara suatu variabel dengan satu atau lebih variabel independen. Hasil analisis regresi adalah berupa koefisien regresi untuk masing-masing variable independent. Koefisien ini diperoleh dengan cara memprediksi nilai variable dependen dengan suatu persamaan. Korelasi dan regresi keduanya mempunyai hubungan yang sangat erat. Setiap regresi pasti ada korelasinya, tetapi korelasi belum tentu dilanjutkan dengan regresi. Korelasi yang tidak dilanjutkan dengan regresi, adalah korelasi antara dua variabel yang tidak mempunyai hubungan kasual/sebab akibat, atau hubungan fungsional. Untuk menetapkan kedua variabel mempunyai hubungan kusal atau tidak, maka harus didasarkan pada teori atau konsep-konsep tentang dua variabel tersebut. Hubungan antara panas dengan tingkat muai panjang, dapat dikatakan sebagai hubungan yang kausal, hubungan antara kepemimpinan dengan kepuasan kerja pegawai dapat dikatakan hubungan yang fungsional, hubungan antara kupu-kupu yang datang dengan banyaknya tamu di rumah bukan merupakan hubungan kausal maupun fungsional. Kita gunakan analisis regresi bila kita ingin mengetahui bagaimana variabal dependen/kriteria dapat diprediksikan melalui variabel independen atu variabel prediktor, secara individual. Dampak dari penggunaan analisis regresi dapat digunakan untuk memutuskan apakah naik dan menurunnya variabel dependen dapat dilakukan melalui menaikan dan menurunkan keadaan variabel independen, atau meningkatkan keadaan variabel dependen dapat dilakukan dengan meningkatkan variabel independen/dan sebaliknya. A. Regresi Linier Sederhana Regresi sederhana didasarkan pada hubungan fungsional ataupun kausal antara satu variabel independen dengan satu variabel dependen. Persamaan umum regresi linier sederhana adalah B. Regresi Ganda Analisis regresi ganda digunakan oleh peneliti, bila peneliti bermaksud meramalkan bagaimana keadaan (naik turunnya) variabel dependen (kriterium), bila dua atau lebih variabel independen sebagai prediktor dimanipulasi (dinaik-turunkan nilainya). Jadi analisis regresi ganda akan dilakukan bila jumlah variabel independennya minimal 2. Persamaan regresi untuk dua prediktor adalah : Y = a + b1X1 + b2X2 Persamaan regresi untuk tiga prediktor adalah : Y = a + b1X1 + b2X2 + b3X3 Persamaan regresi untuk n prediktor adalah : Y = a + b1X1 + b2X2 + b3X3 + b4X4 Untuk bisa membuat ramalan melalui regresi, maka data setiap variabel harus tersedia. Selanjutnya berdasarkan data itu peneliti harus dapat menemukan persamaan regresi melalui perhitungan II. Pengertian Korelasi Korelasi merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran asosiasi / hubungan (measures of association). Pengukuran asosiasi merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel. Analisis korelasi sederhana (Bivariate Correlation) digunakan untuk mengetahui keeratan hubungan antara dua variabel dan untuk mengetahui arah hubungan yang terjadi. Koefisien korelasi sederhana menunjukkan seberapa besar hubungan yang terjadi antara dua variabel. Dalam SPSS ada tiga metode korelasi sederhana (bivariate correlation) diantaranya Pearson Correlation, Kendall’s tau-b, dan Spearman Correlation. Pearson Correlation digunakan untuk data berskala interval atau rasio, sedangkan Kendall’s taub, dan Spearman Correlation lebih cocok untuk data berskala ordinal. Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis, karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut. Dalam korelasi sebenarnya tidak dikenal istilah variabel bebas dan variabel tergantung. Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y untuk variabel kedua. Dalam contoh hubungan antara variabel remunerasi dengan kepuasan kerja, maka variabel remunerasi merupakan variabel X dan kepuasan kerja merupakan variabel Y. Terdapat tiga macam bentuk hubungan antar variabel, yaitu hubungan simetris, hubungan sebab akibat (kausal) dan hubungan Interaktif (saling mempengaruhi). Untuk mencari hubungan antara dua variabel atau lebih dilakukan dengan menghitung korelasi antar variabel yang akan dicari hubungannya. Korelasi merupakan angka yang menunjukkan arah dan kuatnya hubungan antar variabel atau lebih. Artinya dinyatakan dalam bentuk hubungan positif atau negatif, sedangkan kuatnya hubungan dinyatakan dalam besarnya koefisien korelasi. Hubungan dua variabel atau lebih dinyatakan positif, bila nilai satu variabel ditingkatkan, maka akan meningkatkan variabel yang lain, dan sebaliknya bila nilai satu variabel diturunkan maka akan menurunkan variabel yang lain. Sebagai contoh, ada hubungan positif antara tinggi badan dengan kecepatan lari, hal ini berarti semakin tinggi badan orang maka akan semakin cepat larinya, dan semakin pendek orang maka akan semakin lambat larinya. Hubungan dua variabel atau lebih dinyatakan negatif, bila nilai satu variabel dinaikkan maka akan menurunkan nilai variabel yang lain, dan juga sebaliknya bila nilai satu variabel diturunkan, maka akan menaikkan nilai variabel yang lain. Kuatnya hubungan antara variabel dinyatakan dalam koefisien korelasi. Koefisien korelasi positif terbesar = 1 dan koefisien korelasi negatif terbesar adalah - 1, sedangkan yang terkecil adalah 0. Bila besarnya antara dua variabel atau lebih itu mempunyai koefisien korelasi = 1 atau -1, maka hubungan tersebut sempurna. Dalam arti kejadian-kejadian pada variabel yang satu akan dapat dijelaskan atau diprediksikan oleh variabel yang lain tanpa terjadi kesalahan (error). Makin kecil koefisien korelasi, maka akan semakin besar error untuk membuat prediksi. Sebagai contoh, bila hubungan bunyinya burung Prenjak mempunyai koefisien korelasi sebesar 1, maka dapat diramalkan setiap ada bunyi burung Prenjak maka dipastikan akan ada tamu. Tetapi kalau koefisien korelasinya kurang dari satu, setiap ada bunyi burung Prenjak belum tentu ada tamu, apa lagi koefisien korelasinya mendekati 0. Statistik Parametris yang digunakan untuk menguji hipotsis asosiatif (hubungan antar variabel meliputi Korelasi Product Moment, Korelasi Ganda dan Korelasi Parsial. 1. Korelasi Product Moment Teknik korelasi ini digunakan untuk mencari hubungan dan membuktikan hipotesis hubungan dua variabel bila data kedua variabel berbentuk interval atau ratio, dan sumber data dari dua variabel atau lebih adalah sama. Berikut ini dikemukakan rumus yang paling sederhana yang dapat digunakan untuk menghitung koefisien korelasi 2. Korelasi Ganda Korelasi pada (multyple correlation) merupakan angka yang menunjukkan arah dan kuatnya hubungan antara dua variabel secara bersama-sama atau lebih 22 dengan variabel yang lain. 3. Korelasi Parsial Korelasi parsial digunakan untuk menganalisis bila peneliti bermaksud mengetahui pengaruh atau mengetahui hubungan antara variabel independen dan dependen, dimana salah satu variabel Independennya dibuat tetap/dikendalikan. Jadi korelasi parsial merupakan angka yang menunjukkan arah dan kuatnya hubungan antara dua variabel setelah satu variabel yang diduga dapat mempengaruhi hubungan variabel tersebut dikendalikan untuk dibuat tetap keberadaannya. Rumus untuk korelasi parsial Manfaat Korelasi dan Regresi Kegunaan Analisis Korelasi dan Regresi. Dalam kebanyakan fenomena alam, menaksir rerata populasi, atau menguji perbedaan dua rerata dengan teknik uji statistika, baik yang memerlukan asumsi sebaran khusus (parametrik) mau pun yang tidak ketat asumsi sebarannya (nonparametrik) menjadi tidak efisien dan tidak efektif lagi. Hal ini disebabkan oleh banyaknya peubah yang berhubungan dan saling menjelaskan antara yang satu dengan yang lainnya. Misalnya, kita akan memperkirakan nilai jual sebuah rumah di suatu daerah tertentu. Kita dapat mengambil sampel acak dari ratusan rumah yang ada dalam daerah tersebut, kemudian kita menghitung rerata harga jualnya. Tetapi, menggunakan metode ini, kita mengabaikan informasi yang mudah diamati, misalnya luas lantai, banyaknya kamar tidur, banyaknya kamar mandi, dan umur rumah tersebut. Informasi ini akan lebih bermanfaat kalau digunakan menaksir nilai jual rumah yang bersangkutan. Dari latar belakang yang kita perhatikan di atas, metode atau analisis korelasi dan regresi merupakan topik penting untuk dibicarakan. Metode korelasi dapat mengukur kuatnya hubungan antara dua peubah yang sifat hubungannya simetris atau timbal balik Seperti metode korelasi; metode regresi sudah menjadi bagian integral dari setiap analisis data yang memperhatikan hubungan antara satu peubah tanggapan (response variable) dengan satu atau lebih peubah penjelas (explanatory variables). Istilah peubah tanggapan kadangkadang juga disebut peubah terikat atau terikat (dependent variable), dan peubah penjelas disebut peubah penaksir (predictor variable) atau peubah bebas (independent variable). Penggunaan istilah ini biasanya disesuaikan dengan situasi peubah-peubah yang dipelajari hubungannya, dan juga selera penggunanya. BAB III PENUTUP Korelasi merupakan hubungan antara dua kejadian dimana kejadian yang satu dapat mempengaruhi eksistensi kejadian yang lain, Misalnya kejadian X mempengerahui kejadian Y. Apabila dua variable X dan Y mempunyai hubungan, maka nilai variable X yang sudah diketahui dapat dipergunakan untuk memperkirakan/menaksir atau meramalkan Y. Ramalan pada dasarnya merupakan perkiraan/taksiran mengenai terjadinya suatu kejadian(nilai suatu variabel) untuk waktu yang akan datang. Variable yang nilainya akan diramalkan disebut variable tidak bebas (dependent variable), sedangkan variabel C yang nilainya dipergunakan untuk meramalkan nilai Y disebut variable bebas (independent variable) atau variable peramal (predictor) atau seringkali disebut variable yang menerangkan (explanatory). Jadi jelas analisis korelasi ini memungkinkan kita untuk mengetahui suatu di luar hasil penyelidikan, Salah satu cara untuk melakukan peramalan adalah dengan menggunakan garis regresi. Untuk menghitung parameter yang akan dijadikan dalam penentuan hubungan antara dua variabel, terdapat beberapa cara, yaitu: koefisien detreminasi, koefisien korelasi. Apabila terdapat data berkelompok menggunakan koefisien data berkelompok dan bila menggunakan data berganda maksudnya variabel bebas yang mempengaruhi variabel terikat ada dua, maka menggunakan koefisien berganda.Sedangkan regeresi di bagi menjadi dua, yaitu regresi linier dan regresi non linier. Dimana regresi linier juga dibagi menjadi dua yakni regresi linier sederhana dan regresi linier berganda. Manajemen Statistika ANALISIS REGRESI DAN KORELASI OLEH: 1. VICTOR TANGKUMAN 15 202 111 072 2. ELFINA SIMBAR 15 202 111 008 3. LUSSY KAMBEY 15 202 111 4. MITHA TINGGOGOY 15 202 111 5. JUBEDA BASRI 15 202 111 PROGRAM PASCA SARJANA ILMU KESEHATAN MASYARAKAT – KARS UNIVERSITAS SAM RATULANGI MANADO

Judul: Makalah Korelasi Regresi

Oleh: Elfina Simbar

Ikuti kami