Tugas Lingo Po

Oleh Dsds Sdsd

138 KB 6 tayangan 0 unduhan
 


Bagikan artikel

Transkrip Tugas Lingo Po

Albertus H Davy P 190610189 1. Parameter: Biaya artis 1 (C1) = $7.100 Biaya artis 2 (C2) = $1.000 Biaya artis 3 (C3) = $5.100 Biaya artis 4 (C4) = $8.800 Biaya artis 5 (C5) = $1.900 Biaya artis 6 (C6) = $6.500 Biaya artis 7 (C7) = $3.000 Biaya artis 8 (C8) = $975 Dampak artis 1 (D1) = 3 Dampak artis 2 (D2) = 4 Dampak artis 3 (D3) = 3 Dampak artis 4 (D4) = 3 Dampak artis 5 (D5) = 2 Dampak artis 6 (D6) = 3 Dampak artis 7 (D7) = 4 Dampak artis 8 (D8) = 2 Tiket artis 1 (T1) = 350 Tiket artis 2 (T2) = 500 Tiket artis 3 (T3) = 350 Tiket artis 4 (T4) = 400 Tiket artis 5 (T5) = 400 Tiket artis 6 (T6) = 300 Tiket artis 7 (T7) = 500 Tiket artis 8 (T8) = 350 Harga tiket (P) = $12 Variabel keputusan: Artis yang dipilih: X1, X2, X3, X4, X5, X6, X7, X8 Fungsi tujuan: Maks Z (x1000) = 12 (350 X1 + 500 X2 + 500 X3 + 500 X4+ 500 X5 + 500 X6 + 500 X7+ 500 X8) Kendala-kendala: X1+X2+X3+X4+X5+X6+X7+X8=4 (7.100)X1 + (1.000)X2 + (5.100)X3 + (8.800)X4 + (1.900)X5 + (6.500)X6 + (3.000)X7 + (975)X8 <= 20.000 3X1 + 4X2 + 3X3 + 3X4 + 2X5 + 3X6 + 4X7 + 2X8 >= 12 X3+X6+X8=1 X2+X7=4 X1 = {0,1} X2 = {0,1} X3 = {0,1} X4 = {0,1} X5 = {0,1} X6 = {0,1} X7 = {0,1} X8 = {0,1} Albertus H Davy P 190610189 Susun command pada Lingo : !UTS nomer 1; max = 12(350*x1+500*x2+500*x3+500*x4+500*x5+500*x6+500*x7+500*x8); x1+ x2+ x3+ x4+ x5+ x6+ x7+ x8 = 4; 7100*x1 +1000*x2 +5100*x3 +8800*x4 +1900*x5 +6500*x6 +3000*x7 +975*x8 <= 20000; 3*x1+4*x2+3*x3+3*x4+2*x5+3*x6+4*x7+2*x8 >=12; x3 + x6 + x8 = 1; x2 + x7 = 4; @bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6); @bin(x7); @bin(x8); Solve model pada Lingo : “Solusi tidak ditemukan” 2. a) Parameter Pekerja fabrikasi (fb) = 12 pekerja Pekerja finishing (fn) = 3 pekerja Waktu kerja (h) = 7 jam per hari Waktu fabrikasi untuk P1 (m1) = 3,5 jam Waktu finishing untuk P1 (f1) = 1 jam Waktu fabrikasi untuk P2 (m2) = 4 jam Waktu finishing untuk P2 (f2) = 1,5 jam Ketersediaan waktu kerja fabrikasi (Tm) = 12 pekerja x 7 jam/pekerja = 84 jam Ketersediaan waktu kerja finishing (Tf) = 3 pekerja x 7 jam/pekerja = 21 jam Profit per unit produk P1 (P1) = $5A Profit per unit produk P2 (P2) = $6E Variabel keputusan: Jumlah produksi P1 (X1) Jumlah produksi P2 (X2) Fungsi tujuan: Max Z = 51 X1 + 69 X2 Kendala-kendala: 3,5X1+4X2 <=84 X1 + 1,5 X2 <= 21 X2-2X1>=0 X1, X2 >= 0 Albertus H Davy P 190610189 2b. Maksimasi Profit Susun command pada Lingo : !UTS 2b; max = 51*x1 + 69*x2; 3.5*x1 + 4*x2 <= 84; x1 + 1.5*x2 <= 21; x2 >= 2*x1; x1 >=0; x2 >=0; Solve model pada Lingo : Global optimal solution found. Objective value: Infeasibilities: Total solver iterations: Elapsed runtime seconds: 992.2500 0.000000 3 0.06 Model Class: LP Total variables: Nonlinear variables: Integer variables: 2 0 0 Total constraints: Nonlinear constraints: 6 0 Total nonzeros: Nonlinear nonzeros: 10 0 Variable X1 X2 Row 1 2 3 4 5 6 2c. Jika 1 pekerja (fabrikasi) tidak masuk Susun command Lingo : !UTS 2c; max = 51*x1 + 69*x2; 3.5*x1 + 4*x2 <= 77; x1>=0; x2>=0; Value 5.250000 10.50000 Slack or Surplus 992.2500 23.62500 0.000000 0.000000 5.250000 10.50000 Reduced Cost 0.000000 0.000000 Dual Price 1.000000 0.000000 47.25000 -1.875000 0.000000 0.000000 Albertus H Davy P 190610189 Solve model pada Lingo: Global optimal solution found. Objective value: Infeasibilities: Total solver iterations: Elapsed runtime seconds: 1328.250 0.000000 0 0.05 Model Class: LP Total variables: Nonlinear variables: Integer variables: 2 0 0 Total constraints: Nonlinear constraints: 4 0 Total nonzeros: Nonlinear nonzeros: 6 0 Variable X1 X2 Row 1 2 3 4 Value 0.000000 19.25000 Slack or Surplus 1328.250 0.000000 0.000000 19.25000 Reduced Cost 9.375000 0.000000 Dual Price 1.000000 17.25000 0.000000 0.000000 Albertus H Davy P 190610189

Judul: Tugas Lingo Po

Oleh: Dsds Sdsd


Ikuti kami