Tugas Mikro

Oleh Ashil Zhorif

260,5 KB 7 tayangan 0 unduhan
 
Bagikan artikel

Transkrip Tugas Mikro

`1. Tujuan Membuat rangkaian Motor DC menggunakan mikrokontroler ATMega8535 dengan software compiler BASCOM AVR 2. 3. Komponen yang digunakan Motor DC Switch LCD Mikrokontroler ATMega8535 Dasar teori 3.1 Pengertian Motor DC Motor listrik adalah sebuah mesin listrik yang berfungsi untuk mengubah energi listrik menjadi energi mekanik. Motor listrik pertama kali diciptakan dengan menggunakan sumber arus listrik searah atau DC (Direct Current) oleh beberapa ilmuwan seperti Englishman Peter Barlow (1822), Prussian Moritz Jacobi (1834), dan William Sturgeon (1832). Perkembangan motor listrik DC tidak dapat terlepas dari sebuah fenomena induksi elektromagnetik yang diperkenalkan oleh Michael Faraday (1831) dan terkenal dengan sebutan Hukum Faraday. Namun justru di akhir abad 19, puluhan tahun setelah para ilmuwan memperkenalkan motor listrik, John Ambrose Fleming memperkenalkan sebuah sistem mneumonik untuk memudahkan kita memahami fenomena yang terjadi pada motor listrik dan generator listrik. Sistem mneumonik tersebut Fleming sebut dengan kaidah tangan kiri untuk motor listrik, dan kaidah tangan kanan untuk generator listrik. Kaidah ini memudahkan kita untuk menentukan arah gaya dorong, arah medan magnet, serta arah arus listrik pada sebuah sistem induksi elektromagnetik. Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC. Motor Listrik DC atau DC Motor ini menghasilkan sejumlah putaran per menit atau biasanya dikenal dengan istilah RPM (Revolutions per minute) dan dapat dibuat berputar searah jarum jam maupun berlawanan arah jarum jam apabila polaritas listrik yang diberikan pada Motor DC tersebut dibalikan. Kebanyakan Motor Listrik DC memberikan kecepatan rotasi sekitar 3000 rpm hingga 8000 rpm dengan tegangan operasional dari 1,5V hingga 24V. Apabile tegangan yang diberikan ke Motor Listrik DC lebih rendah dari tegangan operasionalnya maka akan dapat memperlambat rotasi motor DC tersebut sedangkan tegangan yang lebih tinggi dari tegangan operasional akan membuat rotasi motor DC menjadi lebih cepat. Namun ketika tegangan yang diberikan ke Motor DC tersebut turun menjadi dibawah 50% dari tegangan operasional yang ditentukan maka Motor DC tersebut tidak dapat berputar atau terhenti. Sebaliknya, jika tegangan yang diberikan ke Motor DC tersebut lebih tinggi sekitar 30% dari tegangan operasional yang ditentukan, maka motor DC tersebut akan menjadi sangat panas dan akhirnya akan menjadi rusak. Jenis-Jenis Motor DC Motor DC sumber daya terpisah/ Separately Excited, Jika arus medan dipasok dari sumber terpisah maka disebut motor DC sumber daya terpisah/separately excited. Motor DC sumber daya sendiri/ Self Excited, Pada jenis motor DC sumber daya sendiri di bagi menjadi 3 tipe sebagi berikut : Motor DC Tipe Shunt Pada motor shunt, gulungan medan (medan shunt) disambungkan secara paralel dengan gulungan dinamo (A). Oleh karena itu total arus dalam jalur merupakan penjumlahan arus medan dan arus dinamo. Karakter kecepatan motor DC tipe shunt adalah : Kecepatan pada prakteknya konstan tidak tergantung pada beban (hingga torque tertentu setelah kecepatannya berkurang) dan oleh karena itu cocok untuk penggunaan komersial dengan beban awal yang rendah, seperti peralatan mesin. Kecepatan dapat dikendalikan dengan cara memasang tahanan dalam susunan seri dengan dinamo (kecepatan berkurang) atau dengan memasang tahanan pada arus medan (kecepatan bertambah). Motor DC Tipe Seri Dalam motor seri, gulungan medan (medan shunt) dihubungkan secara seri dengan gulungan dinamo (A). Oleh karena itu, arus medan sama dengan arus dinamo. Karakter kecepatan dari motor DC tipe seri adalah : Kecepatan dibatasi pada 5000 RPM Harus dihindarkan menjalankan motor seri tanpa ada beban sebab motor akan mempercepat tanpa terkendali. Motor DC Tipe Kompon/Gabungan Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dinamo (A). Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Karakter dari motor DC tipe kompon/gabungan ini adalah, makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini 3.2 Prinsip Kerja Motor DC Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulangulang hingga arus listrik pada kumparan diputuskan. Prinsip Dasar Cara Kerja Jika arus lewat pada suatu konduktor, timbul medan magnet di sekitar konduktor. Arah medan magnet ditentukan oleh arah aliran arus pada konduktor. Aturan Genggaman Tangan Kanan bisa dipakai untuk menentukan arah garis fluks di sekitar konduktor. Genggam konduktor dengan tangan kanan dengan jempol mengarah pada arah aliran arus, maka jari-jari anda akan menunjukkan arah garis fluks. Gambar diatas menunjukkan medan magnet yang terbentuk di sekitar konduktor berubah arah karena bentuk U. Medan magnet hanya terjadi di sekitar sebuah konduktor jika ada arus mengalir pada konduktor tersebut. Jika konduktor berbentuk U (angker dinamo) diletakkan di antara kutub uatara dan selatan yang kuat medan magnet konduktor akan berinteraksi dengan medan magnet kutub. Gambar Reaksi Garis Fluks Lingkaran bertanda A dan B merupakan ujung konduktor yang dilengkungkan (looped conductor). Arus mengalir masuk melalui ujung A dan keluar melalui ujung B. Medan konduktor A yang searah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di bawah konduktor. Konduktor akan berusaha bergerak ke atas untuk keluar dari medan kuat ini. Medan konduktor B yang berlawanan arah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di atas konduktor. Konduktor akan berusaha untuk bergerak turun agar keluar dari medan yang kuat tersebut. Gaya-gaya tersebut akan membuat angker dinamo berputar searah jarum jam. Mekanisme kerja untuk seluruh jenis motor secara umum : Arus listrik dalam medan magnet akan memberikan gaya. Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran / loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan. Pasangan gaya menghasilkan tenaga putar / torque untuk memutar kumparan. Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan. Pada motor dc, daerah kumparan medan yang dialiri arus listrik akan menghasilkan medan magnet yang melingkupi kumparan jangkar dengan arah tertentu. Konversi dari energi listrik menjadi energi mekanik (motor) maupun sebaliknya berlangsung melalui medan magnet, dengan demikian medan magnet disini selain berfungsi sebagai tempat untuk menyimpan energi, sekaligus sebagai tempat berlangsungnya proses perubahan energi, daerah tersebut dapat dilihat pada gambar di bawah ini : Gambar Prinsip Kerja Motor DC Agar proses perubahan energi mekanik dapat berlangsung secara sempurna, maka tegangan sumber harus lebih besar daripada tegangan gerak yang disebabkan reaksi lawan. Dengan memberi arus pada kumparan jangkar yang dilindungi oleh medan maka menimbulkan perputaran pada motor. Prinsip Arah Putaran Motor Untuk menentukan arah putaran motor digunakan kaedah Flamming tangan kiri. Kutub-kutub magnet akan menghasilkan medan magnet dengan arah dari kutub utara ke kutub selatan. Jika medan magnet memotong sebuah kawat penghantar yang dialiri arus searah dengan empat jari, maka akan timbul gerak searah ibu jari. Gaya ini disebut gaya Lorentz, yang besarnya sama dengan F. Prinsip motor : aliran arus di dalam penghantar yang berada di dalam pengaruh medan magnet akan menghasilkan gerakan. Besarnya gaya pada penghantar akan bertambah besar jika arus yang melalui penghantar bertambah besar. Skema Dasar Motor Listrik DC Selanjutnya untuk lebih memahami bagaimana sebuah motor listrik dapat bekerja, mari kita perhatikan gambar skema motor listrik DC di atas. Pada skema di atas, rotor motor diskemakan dengan sebuah kawat angker penghantar listrik (armature) yang membentuk persegi panjang. Pada kedua ujung kawat angker terpasang komutator berbentuk lingkaran yang terbelah di tengahnya, komponen ini sering kita dengar dengan sebutan cincin belah. Cincin belah termasuk bagian dari rotor, sehingga ia ikut berputar dengan rotor. Sedangkan stator motor tersusun atas dua magnet dengan kutub berbeda yang saling berhadapan. Pada bagian yang kontak langsung dengan cincin belah, stator dilengkapi dengan sikat karbon yang berfungsi untuk menghubungkan arus listrik dari sumber tegangan ke kumparan rotor. Sumber tegangan DC diilustrasikan dengan gambar baterai pada skema motor DC di atas. Masing-masing kutub baterai terhubung dengan sikat karbon, sehingga tercipta arus listrik DC dengan arah arus dari kutub positif ke negatif melewati sikat karbon, satu bagian cincin belah, kawat angker (armature), kembali ke cincin belah, sikat karbon dan ke kutub negatif baterai. (a) (b) (c) Proses Berputarnya Rotor Motor Listrik DC (Sumber) Setelah kita memahami konsep kaidah tangan kiri Fleming serta juga komponen-komponen dasar dari motor listrik, maka kita akan dengan mudah memahami bagaimana motor listrik dapat bekerja. Kita mulai dengan gambar (a) di atas, garis medan magnet mengarah ke kiri yang disimbolkan dengan garis biru dan huruf (B). Untuk arah arus listrik ditunjukkan dengan garis berwarna hitam dan huruf (I). Jika kita mencoba menggunakan kaidah tangan kiri kita pada sisi kiri kawat angker, maka akan kita dapatkan bahwa gaya dorong (F) akan mengarah ke atas. Sedangkan untuk sisi kanan kawat angker, kaidah tangan kiri akan menunjukkan bahwa gaya dorong akan mengarah ke bawah. Gaya dorong yang tegak lurus langsung terhadap kawat angker kanan dan kiri ini menghasilkan torsi yang paling besar pada rotor motor. Gaya torsi inilah yang akan memutar rotor motor. Pada posisi rotor seperti gambar (b), masing-masing cincin belah masih terhubung dengan sikat karbon sehingga arah arus listrik tidak berubah. Dengan cara yang sama menggunakan kaidah tangan kiri, arah gaya dorong juga mengarah ke atas untuk kawat angker kiri dan ke bawah untuk kawat angker kanan. Namun besar gaya torsi yang terjadi adalah lebih kecil sebesar cos α daripada gaya F. Gaya torsi ini masih akan membuat rotor motor berputar searah jarum jam. Torsi rotor akan menjadi nol pada saat kawat angker berposisi seperti pada gambar (c). Sesuai dengan kaidah tangan kiri, jika pada kawat angker terdapat arus listrik, maka arah gaya dorong kawat juga ke atas atau pun ke bawah. Namun karena gaya tersebut segaris dengan titik poros rotor, atau dapat pula dikatakan tegak lurus dengan arah putaran rotor, maka tidak akan timbul gaya torsi pada kawat angker. Sudut α yang sebesar 90o menjelaskan pula tidak akan timbul gaya torsi pada saat posisi kawat angker demikian, karena nilai dari cos 90o adalah nol. Nilai torsi nol ini tidak akan membuat rotor motor berhenti berputar, karena sifat kelembaman rotor maka rotor akan terus berputar selama masih ada arus listrik yang mengalir pada kawat angker. Setelah kawat angker melewati fase tegak lurus dan membentuk sudut -α, arah arus listrik akan mengalir dengan arah yang sama seperti pada saat kawat angker bersudut +α (gambar b). Komponen komutator yang selalu ikut berputar dengan rotor dan sikat karbon yang selalu diam, menjadi komponen yang akan menjaga arah arus listrik untuk selalu tetap yakni -sesuai gambar skema-- mengalir dari sisi kiri kawat angker ke kanan. Arah arus listrik yang selalu tetap di setiap setengah putaran rotor inilah yang akan membuat rotor motor listrik selalu berputar selama masih ada arus listrik yang mengalir ke kawat angker 4. Listing Program $regfile = "m8535.datPO" $crystal = 16000000 Config Porta = Output Ddrb = &B00 Do If Pinb.0 = 1 Then Porta = &B1010 Waitms 100 Elseif Pinb.1 = 1 Then Porta = &B0101 Waitms 100 Else Porta = &B0000 End If Loop End 5. Flowchart 6. Rangkaian 7. Kesimpulan Deklarasi PORT A sebagai output,PORT B digunakan sebagai Input. Jika PIN B.0 bernilai 1 maka pada PORT A akan membuat motor DC berputar berlawanan arah jarum jam. Jika PIN B.1 = 1 maka pada PORT A akan membuat motor DC berputar searah jarum jam. Jika PORT B tidak tidak ada inputan maka PORT A dalam keadaan mati. TUGAS MIKROPROSESOR Motor DC menggunakan mikrokontroler ATMega8535 dengan software compiler BASCOM AVR KELOMPOK 10 ARRY RISKI ILHAM AKBAR HABIBIE KEVIN GILLAND HAEZER DAFA FAJAR SATRIO 2016-11-018 2016-11-186 2016-11-191 2016-11-257

Judul: Tugas Mikro

Oleh: Ashil Zhorif


Ikuti kami